[source] # Gaussian Random Projector Random Projection is a dimensionality reduction technique based on the Johnson-Lindenstrauss lemma. It uses random matrices to project feature vectors onto a target number of dimensions. The Gaussian Random Projector utilizes a random matrix sampled from a smooth Gaussian distribution which projects samples onto a spherically random hyperplane through the origin. **Interfaces:** [Transformer](api.md#transformer), [Stateful](api.md#stateful), [Persistable](../persistable.md) **Data Type Compatibility:** Continuous only ## Parameters | # | Name | Default | Type | Description | |---|---|---|---|---| | 1 | dimensions | | int | The number of target dimensions to project onto. | ## Example ```php use Rubix\ML\Transformers\GaussianRandomProjector; $transformer = new GaussianRandomProjector(100); ``` ## Additional Methods Estimate the minimum dimensionality needed to satisfy a *max distortion* constraint with *n* samples using the Johnson-Lindenstrauss lemma: ```php public static minDimensions(int $n, float $maxDistortion = 0.5) : int ``` ```php use Rubix\ML\Transformers\GaussianRandomProjector; $dimensions = GaussianRandomProjector::minDimensions(5000, 0.2); ```